首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Active control of nanolitre droplet contents with convective concentration gradients across permeable walls
Authors:Zeitoun Ramsey I  Goudie Marcus J  Zwier Jacob  Mahawilli David  Burns Mark A
Institution:Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
Abstract:Nanolitre droplets in microfluidic devices can be used to perform thousands of independent chemical and biological experiments while minimizing reagents, cost and time. However, the absence of simple and versatile methods capable of controlling the contents of these nanolitre chemical systems limits their scientific potential. To address this, we have developed a method that is simple to fabricate and can continuously control nanolitre chemical systems by integrating a time-resolved convective flow signal across a permeable membrane wall. With this method, we can independently control the volume and concentration of nanolitre-sized drops without ever directly contacting the fluid. Transport occurring in these systems was also analyzed and thoroughly characterized. We achieved volumetric fluid introduction and removal rates ranging from 0.23 to 4.0 pL s(-1). Furthermore, we expanded this method to perform chemical processes. We precipitated silver chloride using a flow signal of sodium chloride and silver nitrate droplets. From there, we were able to separate sodium chloride reactants with a water flow signal, and dissolve silver chloride solids with an ammonia hydroxide flow signal. Finally, we demonstrate the potential to deliver large molecules and perform physical processes like crystallization and particle packing.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号