首页 | 本学科首页   官方微博 | 高级检索  
     


Simple Synthesis of Red Iridium(III) Complexes with Sulfur-Contained Four-Membered Ancillary Ligands for OLEDs
Authors:Meng-Xi Mao  Fang-Ling Li  Yan Shen  Qi-Ming Liu  Shuai Xing  Xu-Feng Luo  Zhen-Long Tu  Xue-Jun Wu  You-Xuan Zheng
Affiliation:1.State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China; (M.-X.M.); (F.-L.L.); (Y.S.); (Q.-M.L.); (S.X.); (X.-F.L.); (Z.-L.T.); (X.-J.W.);2.Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
Abstract:Phosphorescent iridium(III) complexes have been widely researched for the fabrication of efficient organic light-emitting diodes (OLEDs). In this work, three red Ir(III) complexes named Ir-1, Ir-2, and Ir-3, with Ir-S-C-S four-membered framework rings, were synthesized efficiently at room temperature within 5 min using sulfur-containing ancillary ligands with electron-donating groups of 9,10-dihydro-9,9-dimethylacridine, phenoxazine, and phenothiazine, respectively. Due to the same main ligand of 4-(4-(trifluoromethyl)phenyl)quinazoline, all Ir(III) complexes showed similar photoluminescence emissions at 622, 619, and 622 nm with phosphorescence quantum yields of 35.4%, 50.4%, and 52.8%, respectively. OLEDs employing these complexes as emitters with the structure of ITO (indium tin oxide)/HAT-CN (dipyra-zino[2,3-f,2′,3′-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile, 5 nm)/TAPC (4,4′-cyclohexylidenebis[N,N-bis-(4-methylphenyl)aniline], 40 nm)/TCTA (4,4″,4″-tris(carbazol-9-yl)triphenylamine, 10 nm)/Ir(III) complex (10 wt%): 2,6DCzPPy (2,6-bis-(3-(carbazol-9-yl)phenyl)pyridine, 10 nm)/TmPyPB (1,3,5-tri(mpyrid-3-yl-phenyl)benzene, 50 nm)/LiF (1 nm)/Al (100 nm) achieved good performance. In particular, the device based on complex Ir-3 with the phenothiazine unit showed the best performance with a maximum brightness of 22,480 cd m−2, a maximum current efficiency of 23.71 cd A−1, and a maximum external quantum efficiency of 18.1%. The research results suggest the Ir(III) complexes with a four-membered ring Ir-S-C-S backbone provide ideas for the rapid preparation of Ir(III) complexes for OLEDs.
Keywords:red iridium(III) complex   Ir-S-C-S four-membered backbone   fast synthesis   OLED
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号