首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Biaxial Q-shearing of 27Al 3QMAS NMR spectra: Insight into the structural disorder of framework aluminosilicates
Institution:1. Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky sq. 2, 162 06 Prague 6, Czech Republic;2. J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejskova 2155/3, 182 23 Prague 8, Czech Republic;1. Univ. Lille, CNRS, UMR 8181-UCCS, Unité de Catalyse et de Chimie du Solide, F-59000 Lille, France;2. Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, China;3. Bruker France, 34 rue de l’Industrie, F-67166 Wissembourg, France;4. Institut Universitaire de France, 1, rue Descartes, 75231 Paris, France;1. Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany;2. Institute of Physics, Ilmenau University of Technology, PO Box 100565, 98684 Ilmenau, Germany;1. Polish Academy of Sciences, Centre of Molecular and Macromolecular Studies, Lodz 90-363, Poland;2. UCCS, University Lille North of France, Villeneuve d’Ascq 59652, France;3. JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan;4. RIKEN CLST-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan;5. Physics Department, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China;1. Center for Insoluble Protein Structures, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark;2. Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India;3. TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad 500075, India;1. NMR Science and Development Division, RIKEN SPring-8 Center, and Nano-Crystallography Unit, RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan;2. Department of Chemistry and NIS Centre, University of Torino, V.P. Giuria 7, 10125, Italy;3. School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel;4. JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan
Abstract:In this contribution, we present the application potentiality of biaxial Q-shearing of 27Al 3QMAS NMR spectra in the analysis of structural defects of aluminium units in aluminosilicates. This study demonstrates that the combination of various shearing transformations of the recorded 27Al 3QMAS NMR spectra enables an understanding of the broadening processes of the correlation signals of disordered framework aluminosilicates, for which a wide distribution of 27Al MAS NMR chemical shifts and quadrupolar parameters (i.e., second-order quadrupolar splitting and quadrupole-induced chemical shifts) can be expected. By combining the suitably selected shearing transformation procedures, the mechanisms of the formation of local defects in aluminosilicate frameworks, including Al/Si substitution effects in the next-nearest neighbouring T-sites, variations in bond angles, and/or variations in the physicochemical nature of charge-balancing counter-ions, can be identified. The proposed procedure has been extensively tested on a range of model aluminosilicate materials (kyanite, γ-alumina, metakaolin, analcime, chabazite, natrolite, phillipsite, mordenite, zeolite A, and zeolite Y).
Keywords:Biaxial shearing  Zeolites  Aluminosilicates  Disorder  Signal broadening  Extra-framework aluminium species
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号