首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Feasibility of arsenic and antimony NMR spectroscopy in solids: An investigation of some group 15 compounds
Institution:2. UCCS, UMR-CNRS 8181, Université de Lille 1, Villeneuve d’Ascq, France
Abstract:The feasibility of obtaining 75As and 121/123Sb NMR spectra for solids at high and moderate magnetic field strengths is explored. Arsenic-75 nuclear quadrupolar coupling constants and chemical shifts have been measured for arsenobetaine bromide and tetraphenylarsonium bromide. Similarly, 121/123Sb NMR parameters have been measured for tetraphenylstibonium bromide and potassium hexahydroxoantimonate. The predicted pseudo-tetrahedral symmetry at arsenic and the known trigonal bipyramidal symmetry at antimony in their respective tetraphenyl-bromide “salts” are reflected in the measured 75As and 121Sb nuclear quadrupole coupling constants, CQ(75As)=7.8 MHz and CQ(121Sb)=159 MHz, respectively. Results of density functional theory quantum chemistry calculations for isolated molecules using ADF and first-principles calculations using CASTEP, a gauge-including projector augmented wave method to deal with the periodic nature of solids, are compared with experiment. Although the experiments can be time consuming, measurements of 75As and 121Sb NMR spectra (at 154 and 215 MHz, respectively, i.e., at B0=21.14 T) with linewidths in excess of 1 MHz are feasible using uniform broadband excitation shaped pulse techniques (e.g., WURST and WURST-QCPMG).
Keywords:Solid-state NMR  Arsenic  Antimony  High-field NMR spectroscopy  ADF  CASTEP  DFT
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号