首页 | 本学科首页   官方微博 | 高级检索  
     


NMR parameters in column 13 metal fluoride compounds (AlF3, GaF3, InF3 and TlF) from first principle calculations
Affiliation:1. Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3, France;2. LUNAM Université, Université du Maine, CNRS UMR 6283, Institut des Molécules et des Matériaux du Mans, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France;3. Conditions Extrêmes et Matériaux: Haute Température et Irradiation, CNRS UPR 3079, 1D Avenue de la Recherche Scientifique, 45071 Orléans Cedex 2, France;4. Université d’Orléans, Faculté des Sciences, Avenue du Parc Floral, 45067 Orléans Cedex 2, France;1. Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205, Berlin, Germany;2. Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science at MLZ, Lichtenbergstr. 1, 85748, Garching, Germany;3. Institut Laue Langevin, 71, Avenue des Martyrs, Grenoble, 38000, France;4. Helmholtz Zentrum Berlin, Hahn-Meitner Platz 1, 14109, Berlin, Germany;5. A.V. Topchiev Institute of Petrochemical Synthesis of Russian Academy of Science, Leninskii Prospect, 29, 119991, Moscow, Russia;6. Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS-1) and Institute for Biological Information Processing (IBI-8), 52425, Jülich, Germany;1. Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, PR China;2. Graduate School of Chinese Academy of Sciences, Beijing 100039, PR China;1. Eindhoven University of Technology, De Rondom 70, 5612, AZ, Eindhoven, Netherlands;2. Boreskov Institute of Catalysis, Ac. Lavrentiev av. 5, Novosiborsk, Russia;1. Dipartimento per la Innovazione nei sistemi Biologici, Agroalimentari e Forestali (DIBAF), Università della Tuscia, L.go dell’Università, s.n.c., 01100 Viterbo, Italy;2. Istituto per i Sistemi Biologici del CNR, Via Salaria, Km 29.500, 00015 Monterotondo, RM, Italy;3. Istituto per la Scienza e Tecnologia dei Plasmi del CNR (ISTP), Via Amendola 122/D, 70126 Bari, Italy;1. Department of Physics, Beijing Technology and Business University, Beijing 100048, PR China;2. Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China;3. Department of Energy Chemistry and Materials Engineering, ShanXi Institute of Enegry, Jinzhong 030600, PR China
Abstract:The relationship between the experimental 19F isotropic chemical shift and the 19F isotropic shielding calculated using the gauge including projector augmented-wave (GIPAW) method with PBE functional is investigated in the case of GaF3, InF3, TlF and several AlF3 polymorphs. It is shown that the linear correlation between experimental and DFT-PBE calculated values previously established on alkali, alkaline earth and rare earth of column 3 basic fluorides (Sadoc et al., Phys. Chem. Chem. Phys. 13 (2011) 18539–18550) remains valid in the case of column 13 metal fluorides, indicating that it allows predicting 19F solid state NMR spectra of a broad range of crystalline fluorides with a relatively good accuracy. For the isostructural α-AlF3, GaF3 and InF3 phases, PBE-DFT geometry optimization leads to noticeably overbended M–F–M bond angles and underestimated 27Al, 71Ga and 115In calculated quadrupolar coupling constants. For the studied compounds, whose structures are built of corner shared MF6 octahedra, it is shown that the electric field gradient (EFG) tensor at the cationic sites is not related to distortions of the octahedral units, in contrast to what previously observed for isolated AlF6 octahedra in fluoroaluminates.
Keywords:First principle calculations  Solid state NMR  Crystalline fluorides
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号