首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Development and research for applying innovative magnetic soft mold imprinting techniques in microstructure component manufacturing
Authors:Y‐J Weng  Y‐C Weng  S‐Y Yang
Abstract:The present study employs an innovative technique, which uses PDMS soft mold, blended with magnetic powder as the transmission and imprinting methods, and integrates features from soft micromolding PMMA, an electro‐magnetically controlled, well‐proportioned, pressing technique in order to study how to create microlens arrays through a magnetic soft mold imprinting resist technique. Thus, it renders nanometer imprinting applications, and its technology, more developed and mature. The research findings revealed that, PDMS, blended with magnetic powder, can accurately recast and duplicate nanometer microstructures. Under well‐proportioned magnetic pressing, controlled by an electro‐magnetic disk, it can effectively fill and shape resist microstructures. The composite material of PDMS, with added magnetic iron powder, can effectively improve mechanical strength properties of pure PDMS soft mold, which is easily transformed for imprinting. Meanwhile, owing to the unique features of PDMS soft mold, conformal contact with the base material is possible; therefore, the effective imprinting area and the duplicated representation are significantly improved. In addition, as magnetic PDMS soft mold is easily produced and fast in recasting, the costs can be effectively reduced. In addition, due to features such as low surface free energy and a tendency not to stick to resist in imprinting, the soft mold is evenly controlled by the electro‐magnetic disk for imprinting duplication, highlighting the advantages of microstructure imprinting procedures. Copyright © 2008 John Wiley & Sons, Ltd.
Keywords:magnetic powder  magnetic soft mold imprinting  conformal contact  multi‐stage composite casting  open imprinting technique
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号