首页 | 本学科首页   官方微博 | 高级检索  
     


Manipulating Nonlinear Photocurrent from Interlayer Coupling in Bilayer Metamaterials for Polarized Terahertz Generation
Authors:Ming-jian Shi  Zhen Lei  Ya-yan Xi  Xue-qin Cao  Hui-biao Liu  Yuan-yuan Huang  Xin-long Xu
Affiliation:Shaanxi Joint Lab of Graphene, State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, School of Physics, Northwest University, Xi'an, 710069 China
Abstract:Polarized terahertz (THz) wave generation is of great significance for chiral and anisotropic sensing applications. However, how to manipulate amplitude, polarization, and ellipticity of the THz generation is still a fundamental challenge. Herein, polarized THz wave generation is achieved from a bilayer metamaterial consisting of T-shaped structure (TSS) and split resonator rings (SRRs) by combining Maxwell and hydrodynamic equations. The elliptically polarized THz wave can be synthetized directly from horizontally and vertically polarized THz components due to the orthogonal nonlinear photocurrents along the arm-directions of TSS and SRRs, respectively. Besides, the ellipticity and the orientation angle of the THz polarization ellipse can be modulated by the twist angle between the SRRs and TSS layers. The maximum ellipticity can reach 0.34 while the orientation angle is tunable from −0.45 to 0.48π by tuning the twist angle. This work proposes an interlayer coupling method for the polarized THz sources based on metamaterials in potential circular dichroism and chiral sensing applications.
Keywords:bilayer metamaterials  nonlinear photocurrent  polarization control  terahertz (THz) generation  twist angle
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号