首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Construction of Williamson type matrices
Authors:Jennifer Seberry Wallis
Institution:Institute of Advanced Studies, Australian National University , Canberra
Abstract:Recent advances in the construction of Hadamard matrices have depeaded on the existence of Baumert-Hall arrays and four (1, ?1) matrices A B C Dof order m which are of Williamson type, that is they pair-wise satisfy

i) MNT = NMT , ∈ {A B C D} and

ii) AAT + BBT + CCT + DDT = 4mIm .

It is shown that Williamson type matrices exist for the orders m = s(4 ? 1)m = s(4s + 3) for s∈ {1, 3, 5, …, 25} and also for m = 93. This gives Williamson matrices for several new orders including 33, 95,189.

These results mean there are Hadamard matrices of order

i) 4s(4s ?1)t, 20s(4s ? 1)t,s ∈ {1, 3, 5, …, 25};

ii) 4s(4:s + 3)t, 20s(4s + 3)t s ∈ {1, 3, 5, …, 25};

iii) 4.93t, 20.93t

for

t ∈ {1, 3, 5, … , 61} ∪ {1 + 2 a 10 b 26 c a b c nonnegative integers}, which are new infinite families.

Also, it is shown by considering eight-Williamson-type matrices, that there exist Hadamard matrices of order 4(p + 1)(2p + l)r and 4(p + l)(2p + 5)r when p ≡ 1 (mod 4) is a prime power, 8ris the order of a Plotkin array, and, in the second case 2p + 6 is the order of a symmetric Hadamard matrix. These classes are new.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号