首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Encapsulation of tricopper cluster in a synthetic cryptand enables facile redox processes from CuICuICuI to CuIICuIICuII states
Authors:Weiyao Zhang  Curtis E Moore  Shiyu Zhang
Institution:Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Ave, Columbus OH USA,
Abstract:One-pot reaction of tris(2-aminoethyl)amine (TREN), CuI(MeCN)4]PF6, and paraformaldehyde affords a mixed-valent TREN4CuIICuICuI3-OH)](PF6)3 complex. The macrocyclic azacryptand TREN4 contains four TREN motifs, three of which provide a bowl-shape binding pocket for the Cu33-OH)]3+ core. The fourth TREN caps on top of the tricopper cluster to form a cryptand, imposing conformational constraints and preventing solvent interaction. Contrasting the limited redox capability of synthetic tricopper complexes reported so far, TREN4CuIICuICuI3-OH)](PF6)3 exhibits several reversible single-electron redox events. The distinct electrochemical behaviors of TREN4CuIICuICuI3-OH)](PF6)3 and its solvent-exposed analog TREN3CuIICuIICuII3-O)](PF6)4 suggest that isolation of tricopper core in a cryptand enables facile electron transfer, allowing potential application of synthetic tricopper complexes as redox catalysts. Indeed, the fully reduced TREN4CuICuICuI3-OH)](PF6)2 can reduce O2 under acidic conditions. The geometric constraints provided by the cryptand are reminiscent of Nature''s multicopper oxidases (MCOs). For the first time, a synthetic tricopper cluster was isolated and fully characterized at CuICuICuI (4a), CuIICuICuI (4b), and CuIICuIICuI (4c) states, providing structural and spectroscopic models for many intermediates in MCOs. Fast electron transfer rates (105 to 106 M−1 s−1) were observed for both CuICuICuI/CuIICuICuI and CuIICuICuI/CuIICuIICuI redox couples, approaching the rapid electron transfer rates of copper sites in MCO.

Geometric constraints and site isolation provided by the cryptand enable reversible redox of tricopper μ-oxo cluster.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号