首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A ground-state-dominated magnetic field effect on the luminescence of stable organic radicals
Authors:Shun Kimura  Shojiro Kimura  Ken Kato  Yoshio Teki  Hiroshi Nishihara  Tetsuro Kusamoto
Abstract:Organic radicals are an emerging class of luminophores possessing multiplet spin states and potentially showing spin-luminescence correlated properties. We investigated the mechanism of recently reported magnetic field sensitivity in the emission of a photostable luminescent radical, (3,5-dichloro-4-pyridyl)bis(2,4,6-trichlorophenyl)methyl radical (PyBTM) doped into host αH-PyBTM molecular crystals. The magnetic field (0–14 T), temperature (4.2–20 K), and the doping concentration (0.1, 4, 10, and 22 wt%) dependence on the time-resolved emission were examined by measuring emission decays of the monomer and excimer. Quantum mechanical simulations on the decay curves disclosed the role of the magnetic field; it dominantly affects the spin sublevel population of radical dimers in the ground states. This situation is distinctly different from that in conventional closed-shell luminophores, where the magnetic field modulates their excited-state spin multiplicity. Namely, the spin degree of freedom of ground-state open-shell molecules is a new key for achieving magnetic-field-controlled molecular photofunctions.

We investigated the mechanism of the magnetic field effect (MFE) on the emission of a luminescent radical doped into host crystals. It was revealed that the spin sublevel population of radical dimers in the ground states is the key that governs the MFE.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号