首页 | 本学科首页   官方微博 | 高级检索  
     


Photoredox-enabled 1,2-dialkylation of α-substituted acrylates via Ireland–Claisen rearrangement
Authors:Roman Kleinmans  Leon E. Will  J. Luca Schwarz  Frank Glorius
Affiliation:Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster Germany,
Abstract:Herein, we report the 1,2-dialkylation of simple feedstock acrylates for the synthesis of valuable tertiary carboxylic acids by merging Giese-type radical addition with an Ireland–Claisen rearrangement. Key to success is the utilization of the reductive radical-polar crossover concept under photocatalytic reaction conditions to force the [3,3]-sigmatropic rearrangement after alkyl radical addition to allyl acrylates. Using readily available alkyl boronic acids as radical progenitors, this redox-neutral, transition-metal-free protocol allows the mild formation of two C(sp3)–C(sp3) bonds, thus providing rapid access to complex tertiary carboxylic acids in a single step. Moreover, this strategy enables the efficient synthesis of highly attractive α,α-dialkylated γ-amino butyric acids (GABAs) when α-silyl amines are used as radical precursors – a structural motif that was still inaccessible in related transformations. Depending on the nature of the radical precursors and their inherent oxidation potentials, either a photoredox-induced radical chain or a solely photoredox mechanism is proposed to be operative.

A photocatalytic 1,2-dialkylation of α-substituted acrylates is enabled by a reaction cascade combining reductive radical-polar crossover with the established Ireland–Claisen rearrangement for the synthesis of valuable tertiary carboxylic acids.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号