首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Modelling impingement of hollow metal droplets onto a flat surface
Institution:2. Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
Abstract:Despite many theoretical and experimental works dealing with the impact of dense melt droplets on the substrate during the process of thermal spray coating, the dynamics of the impingement of hollow melt droplet and the subsequent splat formation are not well addressed. In this paper a model study for the dynamic impingement of hollow droplet is presented. The hollow droplet is modelled such that it consists of a liquid shell enclosing a gas cavity. The impingement model considers the transient flow dynamics during impact, spreading and solidification of the droplet using the volume of fluid surface tracking method (VOF) coupled with a solidification model within a one-domain continuum formulation. The results for spreading, solidification and formation of splats clearly show that the impingement process of hollow droplet is distinctly different from the dense droplet. Study with different droplet void fractions and void distribution indicates that void fraction and void distribution have a significant influence on the flow dynamics during impact and on the final splat shape. The results are likely to provide insights for the less-explored behaviour of hollow melt droplets in thermal spray coating processes.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号