首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Three-dimensional electron diffraction for porous crystalline materials: structural determination and beyond
Authors:Zhehao Huang  Tom Willhammar  Xiaodong Zou
Institution:Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106 91 Sweden,
Abstract:Porous crystalline materials such as zeolites, metal–organic frameworks (MOFs) and covalent organic frameworks (COFs) have attracted great interest due to their well-defined pore structures in molecular dimensions. Knowing the atomic structures of porous materials is crucial for understanding their properties and exploring their applications. Many porous materials are synthesized as polycrystalline powders, which are too small for structure determination by X-ray diffraction. Three-dimensional electron diffraction (3DED) has been developed for studying such materials. In this Minireview, we summarize the recent developments of 3DED methods and demonstrate how 3DED revolutionized structural analysis of zeolites, MOFs, and COFs. Zeolites and MOFs whose structures remained unknown for decades could be solved. New approaches for design and targeted synthesis of novel zeolites could be developed. Moreover, we discuss the advances of structural analysis by 3DED in revealing the unique structural features and properties, such as heteroatom distributions, mixed-metal frameworks, structural flexibility, guest–host interactions, and structure transformation.

Three-dimensional electron diffraction is a powerful tool for accurate structure determination of zeolite, MOF, and COF crystals that are too small for X-ray diffraction. By revealing the structural details, the properties of the materials can be understood, and new materials and applications can be designed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号