首页 | 本学科首页   官方微博 | 高级检索  
     


Application of Pyrolysis Cryogenic Trap Gas Chromatography/Atomic Emission Detection (Py-CryT-GC/AED) for the Study of Nitrogen Forms and Dynamics in a Grassland Soil
Abstract:Soil organic nitrogen (N) was characterized for its chemical species and chemical transformations in a grassland soil profile by using a combination of cryogenic pyrolysis gas chromatography atomic emission detection method with soil physical size fractionation. The soils taken from 0–12, 12–25, and 25–38 cm depth layers were separated into five fractions, <2, 2–38, 38–53, 53–105, and 105–250 µm and each of which was analyzed for total organic C and N, and different N forms. Our results showed that (1) total organic carbon has a positive correlation with the total organic nitrogen (TON) with correlation coefficient increased with soil depth; (2) deep and small particle-size fraction soils yielded more volatile pyrolysate N than the surface and large particle-size fractions and the amount of volatile pyrolysate N has a linear positive correlation with TON and correlation coefficient increased with soil depth; (3) the major components of the volatile pyrolysate N include ammonia, acetonitrile, hydrogen cyanide, pyridine, and pyrrole; (4) of the total volatile pyrolysate N, ammonia accounted for more than 40%, and the sum of acetonitrile and hydrogen cyanide accounted for approximately 30–50%; and (5) the amounts of acetonitrile, hydrogen cyanide, and pyridine had increased positive correlations with TON with increasing soil depth, but the correlation between the amount of pyrrole and depth decreased in the opposite direction. Our research result sheds some light into soil organic nitrogen forms and its transformations in the processes of soil organic C aging and stabilization.
Keywords:Atomic emission detection  Cryogenic trap  Forms of soil organic N  Gas chromatography  Grassland soil  Pyrolysis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号