Abstract: | ABSTRACT This paper demonstrates the usefulness of near-infrared (NIR) spectra and artificial neural network (ANN) in nondestructive quantitative analysis of pharmaceuticals. Real data sets from near-infrared reflectance spectra of analgini powder pharmaceutical were used to build up an artificial neural network to predict unknown samples. The parameters affecting the network were discussed. A new network evaluation criterion, the degree of approximation, was employed. The overfitting was discussed. Owing to the good nonlinear multivariate calibration nature of ANN, the predicted result was reliable and precise. The relative error of unknown samples was less than 2.5% |