Synthesis and Efficiency of an Epoxy-Urea Chelating Resin for Preconcentrating and Separating Trace Bi,In, Sn,Zr, V And Ti From Solution Samples |
| |
Abstract: | Abstract A new epoxy-urea chelating resin was synthesized from epoxy resin and used for the preconcentration and separation of trace Bi(III), In(III), Sn(IV), Zr(IV), V(V) and Ti(IV) ions from solution samples. The analyzed ions can be enriched at pH 5 at a flow rate of 1–4 ml/min, and can be also desorbed with 10 mL of 2 M HCl +0.1g NH4F solution from the resin column, with recoveries over 97%. The chelating resin reused 6 times can still adsorb quantitatively the Bi, In, Sn, Zr, V and Ti ions, and eighty to thousand-fold excesses of Ca(II), Mg(II), Cu(II), Zn(II), Al(III), Sb(III), Ni(II), Mn(II) and Fe(III) cause little interference with the enrichment and determination of these ions. The RSDs of the proposed method for the determination of 500–50 ng/ml Bi, In and Sn, 50–5.0 ng/ml Zr, V and Ti were in the range of 0.4 ~ 4.0%, the enrichment factor of the resin for the ions is in the range of 10–100. The recoveries of added standard in waste water are between 96% and 100%, and the concentration of each ion in alloy steel sample determined by the method is in good agreement with the reference value analyzed by a steel plant with average error <2.8%. |
| |
Keywords: | Epoxy-urea Chelating Resin Preconcentrate-Separate Bismuth Indium Tin Zirconium Vanadium Titanium |
|
|