首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Symmetric Gaussian elimination for cauchy-type matrices with application to positive definite Toeplitz matrices
Authors:Thomas Huckle
Institution:Institut für Angewandte Mathematik und Statistik, Universit?t Würzburg, Am Hubland, D-97074 Würzburg, Germany, DE
Abstract:The problem of solving linear equations with a Toeplitz matrix appears in many applications. Often is positive definite but ill-conditioned with many small eigenvalues. In this case fast and superfast algorithms may show a very poor behavior or even break down. In recent papers the transformation of a Toeplitz matrix into a Cauchy-type matrix is proposed. The resulting new linear equations can be solved in operations using standard pivoting strategies which leads to very stable fast methods also for ill-conditioned systems. The basic tool is the formulation of Gaussian elimination for matrices with low displacement rank. In this paper, we will transform a Hermitian Toeplitz matrix into a Cauchy-type matrix by applying the Fourier transform. We will prove some useful properties of and formulate a symmetric Gaussian elimination algorithm for positive definite . Using the symmetry and persymmetry of we can reduce the total costs of this algorithm compared with unsymmetric Gaussian elimination. For complex Hermitian , the complexity of the new algorithm is then nearly the same as for the Schur algorithm. Furthermore, it is possible to include some strategies for ill-conditioned positive definite matrices that are well-known in optimization. Numerical examples show that this new algorithm is fast and reliable. Received March 24, 1995 / Revised version received December 13, 1995
Keywords:Mathematics Subject Classification (1991):65F05
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号