首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A control scheme based on ER-materials for vibration attenuation of dynamical systems
Authors:G Leitmann

E Reithmeier

Institution:

Department of Mechanical Engineering University of California at Berkeley, Berkeley, California 94720, USA

Automation and Medical Systems Technology BGT GmbH Postfach 10 11 55, 7770, Ueberlingen, Germany

Abstract:Based on a bang-bang control scheme acting on so called “electrorheological” fluids (ER-fluids), a vibration suppression method is proposed for a class of n-dimensional systems subjected to unknown perturbations. The proposed controller relates to robustness vis-a-vis unknown but bounded disturbances. Two approaches for designing the control scheme are presented and compared. On the one hand we employ Lyapunov stability theory; on the other hand there is an obvious reason for minimizing rate of energy change due to the spring/damper elements by varying the ER-fluid properties appropriately. The system under investigation is an n-degree of freedom one consisting of masses and spring/damper elements. The spring/damper elements contain an ER-fluid; their stiffness and damping properties are changed by varying an imposed electrical field. The changes in spring and damping properties can be effected in microseconds since the control does not involve the separate dynamics (inertia) of usual actuators. Detailed derivations are presented for a two-dimensional case and simulations are carried out for examples of smooth periodic and discontinuous periodic excitation forces.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号