首页 | 本学科首页   官方微博 | 高级检索  
     


Very High Affinity DNA Recognition by Bicyclic and Cross-Linked Oligonucleotides
Authors:Chaudhuri Narayan C  Kool Eric T
Affiliation:Contribution from the Department of Chemistry, University of Rochester, Rochester, New York 14627.
Abstract:We report the synthesis and DNA incorporation of a novel C-5 thiopropyne-substituted thymidine derivative which can be used to bring about covalent crosslinks between two noncomplementary DNA strands. This modified thymine pairs normally with adenine in duplex DNA and is shown not to be destabilizing to DNA double helices. Placement of the thiol-nucleotide near the center of opposing pyrimidine strands in pyr·pur·pyr triple helices results in crosslinking of the pyrimidine strands under aerobic conditions. Thermal melting studies at neutral pH show that such crosslinked ligands bind complementary purine strands with higher affinity than is possible with simple Watson-Crick recognition alone. In addition, we describe the construction of a triplex-forming circular oligonucleotide which contains a similar disulfide link across the center. This macrobicyclic ligand binds with extremely high affinity and sequence selectivity to a complementary purine DNA strand. The formation of crosslinks across two noncomplementary strands represents a new strategy for increasing affinity and selectivity of DNA recognition.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号