首页 | 本学科首页   官方微博 | 高级检索  
     检索      


1/<Emphasis Type="Italic">r</Emphasis> potential in higher dimensions
Authors:Sumanta Chakraborty  Naresh Dadhich
Institution:1.Department of Theoretical Physics,Indian Association for the Cultivation of Science,Kolkata,India;2.IUCAA,Pune,India;3.Center for Theoretical Physics,Jamia Millia Islamia,New Delhi,India
Abstract:In Einstein gravity, gravitational potential goes as \(1/r^{d-3}\) in d non-compactified spacetime dimensions, which assumes the familiar 1 / r form in four dimensions. On the other hand, it goes as \(1/r^{\alpha }\), with \(\alpha =(d-2m-1)/m\), in pure Lovelock gravity involving only one mth order term of the Lovelock polynomial in the gravitational action. The latter offers a novel possibility of having 1 / r potential for the non-compactified dimension spectrum given by \(d=3m+1\). Thus it turns out that in the two prototype gravitational settings of isolated objects, like black holes and the universe as a whole – cosmological models, the Einstein gravity in four and mth order pure Lovelock gravity in \(3m+1\) dimensions behave in a similar fashion as far as gravitational interactions are considered. However propagation of gravitational waves (or the number of degrees of freedom) does indeed serve as a discriminator because it has two polarizations only in four dimensions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号