首页 | 本学科首页   官方微博 | 高级检索  
     检索      

新型室温熔盐二(三氟甲基磺酸酰)亚胺锂-乙酰胺体系的谱学研究
引用本文:邵琛,胡冬华,孙海珠,颜力楷,苏忠民,王荣顺,朱文圣,郭建华,史宁中,孙晖,李泽生,孙家锺.新型室温熔盐二(三氟甲基磺酸酰)亚胺锂-乙酰胺体系的谱学研究[J].高等学校化学学报,2005,26(8):1512-1516.
作者姓名:邵琛  胡冬华  孙海珠  颜力楷  苏忠民  王荣顺  朱文圣  郭建华  史宁中  孙晖  李泽生  孙家锺
作者单位:北京理工大学化工与环境学院,国家高技术绿色材料发展中心,北京,100081;北京理工大学化工与环境学院,国家高技术绿色材料发展中心,北京,100081;北京理工大学化工与环境学院,国家高技术绿色材料发展中心,北京,100081
基金项目:国家自然科学基金;吉林省杰出青年科学基金
摘    要:从分析二(三氟甲基磺酸酰)亚胺锂(LiTFSI)与乙酰胺形成熔盐的作用机制出发,通过红外和拉曼光谱的谱学分析并应用非局部密度泛函方法进行量化计算来对二者的相互作用进行了讨论.发现乙酰胺通过Li—O键与LiTFSI中Li+配位而破坏了LiTFSI的离子键,形成很大的配位阳离子,且正电荷被屏蔽在乙酰胺分子中;而TFSI-离子中电荷的部分离域导致电荷被终端—CF3基团屏蔽在整个分子中,这样两个大的阴阳离子间的库伦作用很弱;同时Li—O配位也导致乙酰胺分子间的氢键断裂,因而室温下体系以液体状态稳定存在.

关 键 词:室温熔盐  二(三氟甲基磺酸酰)亚胺锂  乙酰胺  非局部密度泛函  红外光谱  拉曼光谱
文章编号:0251-0790(2005)08-1512-05
收稿时间:08 3 2004 12:00AM
修稿时间:2004-08-03

Structure Exploration and Function Prediction of SARS Coronavirus E Protein
SHAO Chen,HU Dong-Hua,SUN Hai-Zhu,YAN Li-Kai,SU Zhong-Min,WANG Rong-shun,ZHU Wen-sheng,GUO Jian-Hua,SHI Ning-zhong,SUN Hui,LI Ze-sheng,SUN Chia-Chung.Structure Exploration and Function Prediction of SARS Coronavirus E Protein[J].Chemical Research In Chinese Universities,2005,26(8):1512-1516.
Authors:SHAO Chen  HU Dong-Hua  SUN Hai-Zhu  YAN Li-Kai  SU Zhong-Min  WANG Rong-shun  ZHU Wen-sheng  GUO Jian-Hua  SHI Ning-zhong  SUN Hui  LI Ze-sheng  SUN Chia-Chung
Institution:School of Chemical Engineering &; Environment, Beijing Institute of Technology, National Development Center of High Technology Green Materials, Beijing 100081, China
Abstract:SARS E protein has long been taken only as membrane component of coronavirus. However, the researches have revealed that E proteins play an important multifunctional role in coronavirus virion life cycle. This investigation aims at exploring the three-dimensional(3D) structure of SARS E protein, especially for the loop region of its functional potential. As a result, a possible active site is found to be a cleavage in the C terminal, which is made up of nine amino acids. Additionally, the electrostatic property was employed to conform the possible active site. Electrostatic potential analysis prove that the active site really possesses the largest electrostatic property among the whole molecule domain, accordingly it will have a larger charge deposition and therefore may have stronger capabilities of interaction with possible ligand as well as other protein. The simulation results are helpful to providing insights into understanding the functions of SARS E protein and establishing molecular models for screening anti-SARS drug design.
Keywords:SARS-Coronavirus  E protein  Structure prediction  Bioinformatics  Electrostatic energy
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《高等学校化学学报》浏览原始摘要信息
点击此处可从《高等学校化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号