首页 | 本学科首页   官方微博 | 高级检索  
     


Tuneable magnetic properties of hydrothermally synthesised core/shell CoFe2O4/NiFe2O4 and NiFe2O4/CoFe2O4 nanoparticles
Authors:Trevor P. Almeida  Fabrizio Moro  Michael W. Fay  Yanqiu Zhu  Paul D. Brown
Affiliation:1. School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, People’s Republic of China
Abstract:The aim of this study was to prepare a novel targeting nano drug delivery system of 2-methoxyestradiol (2-ME) based on the folic acid-modified bovine serum albumin, in order to improve the clinical application disadvantages and antitumor effect of 2-ME. In this study, 2-methoxyestradiol-loaded albumin nanoparticles (2-ME-BSANPs) were prepared by desolvation method, and then the activated folic acid was conjugated to 2-ME-BSANPs by covalent attachment (2-ME-FA-BSANPs). The size and zeta potential of 2-ME-FA-BSANPs were about 208.8 ± 5.1 nm and ?32.70 ± 1.01 mV, respectively. 2-ME loading efficiency and loading amount of the nanoparticles were 80.49 ± 3.80 and 10.25 ± 1.59 %, respectively. SEM images indicated that 2-ME-FA-BSANPs were of a round shape, similar uniform size, and smooth surface. Studies on drug release indicated that 2-ME-FA-BSANPs had the properties of sustained and controlled release, which provided them with the ability to fight continually against cancer cells. Internalization analysis demonstrated that 2-ME-FA-BSANPs-targeting drug delivery system could get efficiently transferred into the cells through the folic acid-mediated endocytosis, leading to higher apoptosis and affording higher antitumor efficacy against SMMC-7721 cells in vitro compared with 2-ME alone. Furthermore, the cell-cycle arrest of 2-ME-FA-BSANPs on the SMMC-7721 cells occurred at G2/M phase, and 2-ME-FA-BSANPs did not change the inhibition of the tumor mechanisms of 2-ME. Based on these results, it was concluded that albumin nanoparticles could be the promising nano carrier for 2-ME, and 2-ME-FA-BSANPs-targeting drug delivery system may be promising candidate for providing high treatment efficacy with minimal side effects in future cancer therapy.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号