首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Kinetics and mechanism of iron(III)-nitrilotriacetate complex reactions with phosphate and acetohydroxamic acid
Authors:Gabricević Mario  Crumbliss Alvin L
Institution:Department of Chemistry, Duke University, Box 90346, Durham, North Carolina 27708-0346, USA.
Abstract:The kinetics and mechanism of the substitution of coordinated water in nitrilotriacetate complexes of iron(III) (Fe(NTA)(OH(2))(2) and Fe(NTA)(OH(2))(OH)(-)) by phosphate (H(2)PO(4)(-) and HPO(4)(2)(-)) and acetohydroxamic acid (CH(3)C(O)N(OH)H) were investigated. The phosphate reactions were found to be pH dependent in the range of 4-8. Phosphate substitution rates are independent of the degree of phosphate protonation, and pH dependence is due to the difference in reactivity of Fe(NTA)(OH(2))(2) (k = 3.6 x 10(5) M(-)(1) s(-)(1)) and Fe(NTA)(OH(2))(OH)(-) (k = 2.4 x 10(4) M(-)(1) s(-)(1)). Substitution by acetohydroxamic acid is insensitive to pH in the range of 4-5.2, and Fe(NTA)(OH(2))(2) and Fe(NTA)(OH(2))(OH)(-) react at equivalent rates (k = 4.2 x 10(4) and 3.8 x 10(4) M(-)(1) s(-)(1), respectively). Evidence for acid-dependent and acid-independent back-reactions was obtained for both the phosphate and acetohydroxamate complexes. Reactivity patterns were analyzed in the context of NTA labilization of coordinated water, and outer-sphere electrostatic and H-bonding influences were analyzed in the precursor complex (K(os)).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号