首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The CsLnMSe3 semiconductors (Ln = rare-earth element,Y; M = Zn,Cd, Hg)
Authors:Mitchell Kwasi  Huang Fu Qiang  McFarland Adam D  Haynes Christy L  Somers Rebecca C  Van Duyne Richard P  Ibers James A
Institution:Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
Abstract:CsLnCdSe(3) (Ln = Ce, Pr, Sm, Gd, Tb, Dy, Y) and CsLnHgSe(3) (Ln = La, Ce, Pr, Nd, Sm, Gd, Y) have been synthesized at 1123 K. These isostructural materials crystallize in the layered KZrCuS(3) structure type in the orthorhombic space group Cmcm and are group X extensions of the previously characterized Zn compounds. The structure is composed of two-dimensional LnMSe(3)] layers that stack perpendicular to 010] and are separated by layers of face- and edge-sharing CsSe(8) bicapped trigonal prisms. Because there are no Se-Se bonds in the structure of CsLnMSe(3) (M = Zn, Cd, Hg), the formal oxidation states of Cs/Ln/M/Se are 1+/3+/2+/2-. CsSmHgSe(3) does not adhere to the Curie-Weiss law, whereas CsCeHgSe(3) and CsGdHgSe(3) are Curie-Weiss paramagnets with micro (eff) values of 2.77 and 7.90 micro (B), corresponding well with the theoretical values of 2.54 and 7.94 micro (B) for Ce(3+) and Gd(3+), respectively. Single-crystal optical absorption measurements were performed with polarized light perpendicular to the (010) and (001) crystal faces of these materials. The band gaps of the (010) crystal faces range from 1.94 eV (CsCeHgSe(3)) to 2.58 eV (CsYCdSe(3)) whereas those of the (001) crystal faces span the range 2.37 eV (CsSmHgSe(3)) to 2.54 eV (CsYCdSe(3) and CsYHgSe(3)). The largest band gap variation between crystal faces is 0.06 eV for CsYCdSe(3). Theoretical calculations for CsYMSe(3) indicate that these materials are direct band gap semiconductors whose colors and optical band gaps are dependent upon the orbitals of Y, M, and Se.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号