首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Quantification of global orientational order in organic solids by magic-angle spinning deuterium NMR with rotor synchronization
Authors:Nandagopal Magesh  Utz Marcel
Institution:Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA.
Abstract:A new method for the characterization of orientational order in organic solids based on magic-angle spinning NMR spectroscopy is introduced. The method is related to the rotor-synchronized magic-angle spinning experiment proposed by Harbison and Spiess Chem. Phys. Lett. 124, 128 (1986)], but exploits the anisotropy of the deuterium quadrupolar coupling instead of the carbon-13 chemical shielding anisotropy. Magic-angle spinning provides a sensitivity advantage over pseudostatic techniques; using the deuterium quadrupolar coupling makes the method applicable to systems that do not exhibit large carbon chemical shift anisotropies, such as aliphatic polymers. Due to the magnitude of the deuterium quadrupolar coupling, a large number of spinning sidebands can be reliably observed, allowing for a precise determination of the orientational distribution function. Experimental data are analyzed in terms of Wigner matrix basis functions as well as the conjugate orthogonal functions framework. Unidirectionally cold-drawn poly(ethylene) is used as an example to demonstrate the method.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号