首页 | 本学科首页   官方微博 | 高级检索  
     


New Dystrophin/Dystroglycan interactors control neuron behavior in Drosophila eye
Authors:April K Marrone  Mariya M Kucherenko  Valentyna M Rishko  Halyna R Shcherbata
Affiliation:1. Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
4. Dortmund University of Technology, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
2. Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
3. Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan, 30068
Abstract:

Background

To date, some of the most useful and physiologically relevant neuronal cell culture systems, such as high density co-cultures of astrocytes and primary hippocampal neurons, or differentiated stem cell-derived cultures, are characterized by high cell density and partially overlapping cellular structures. Efficient analytical strategies are required to enable rapid, reliable, quantitative analysis of neuronal morphology in these valuable model systems.

Results

Here we present the development and validation of a novel bioinformatics pipeline called NeuriteQuant. This tool enables fully automated morphological analysis of large-scale image data from neuronal cultures or brain sections that display a high degree of complexity and overlap of neuronal outgrowths. It also provides an efficient web-based tool to review and evaluate the analysis process. In addition to its built-in functionality, NeuriteQuant can be readily extended based on the rich toolset offered by ImageJ and its associated community of developers. As proof of concept we performed automated screens for modulators of neuronal development in cultures of primary neurons and neuronally differentiated P19 stem cells, which demonstrated specific dose-dependent effects on neuronal morphology.

Conclusions

NeuriteQuant is a freely available open-source tool for the automated analysis and effective review of large-scale high-content screens. It is especially well suited to quantify the effect of experimental manipulations on physiologically relevant neuronal cultures or brain sections that display a high degree of complexity and overlap among neurites or other cellular structures.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号