首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Sets in a euclidean space which are not a countable union of convex subsets
Authors:M Kojman  M A Perles  S Shelah
Institution:1. Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel
Abstract:We prove that if a closed planar setS is not a countable union of convex subsets, then exactly one of the following holds:
(a)  There is a perfect subsetPS such that for every pair of distinct pointsx, yεP, the convex closure ofx, y is not contained inS.
(b) (a)  does not hold and there is a perfect subsetPS such that for every pair of pointsx, yεP the convex closure of {x, y} is contained inS, but for every triple of distinct pointsx, y, zεP the convex closure of {x, y, z} is not contained inS.
We show that an analogous theorem is impossible for dimension greater than 2. We give an example of a compact planar set with countable degree of visual independence which is not a countable union of convex subsets, and give a combinatorial criterion for a closed set inR d not to be a countable union of convex sets. We also prove a conjecture of G. Kalai, namely, that a closed planar set with the property that each of its visually independent subsets has at most one accumulation point, is a countable union of convex sets. We also give examples of sets which possess a (small) finite degree of visual independence which are not a countable union of convex subsets.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号