首页 | 本学科首页   官方微博 | 高级检索  
     检索      

基于含锌有机配位聚合物的微孔碳的合成及其电化学性能
引用本文:钱佳晟,刘明贤,甘礼华,吕耀康,陈玲艳,叶瑞杰,陈龙武.基于含锌有机配位聚合物的微孔碳的合成及其电化学性能[J].物理化学学报,2013,29(7):1494-1500.
作者姓名:钱佳晟  刘明贤  甘礼华  吕耀康  陈玲艳  叶瑞杰  陈龙武
作者单位:Department of Chemistry, Tongji University, Shanghai 200092, P. R. China
基金项目:supported by the National Natural Science Foundation of China (21207099, 21273162);Science and Technology Commission of Shanghai Municipality, China (11nm0501000, 12ZR1451100);Key Subject of Shanghai Municipal Education Commission, China (J50102);Fundamental Research Funds for the Central Universities, China (2011KJ023)~~
摘    要:报道了一种基于含锌(II)有机配位聚合物制备微孔碳的新方法. 通过锌离子和酒石酸之间的配位作用获得含锌有机配位化合物, 并通过氢键作用将其引入到间苯二酚/甲醛低聚物溶胶的开放网络结构中. 使含锌有机配位化合物和酚醛低聚物溶胶体系发生共聚反应得到酚醛和含锌有机配位共聚物, 在950℃下热处理分解以及锌蒸气蒸发后制得微孔碳. 微孔碳材料典型样品具有相对较大以及比较规则的微孔, 其比表面积可以达到1260 m2·g-1, 孔体积为0.63 cm3·g-1. 所得微孔碳作为超级电容器电极材料的等效串联电阻为0.46 Ω, 其循环伏安曲线展示出较好的矩形性. 恒流充放电分析结果表明, 当电流密度为1 A·g-1时, 微孔碳电极的比电容为196 F·g-1; 在10 A·g-1的大电流密度下, 比电容仍然达到137 F·g-1. 该电极具有优良的循环稳定性, 1000次循环后比电容保持率达到98%. 这一研究结果表明, 所得微孔碳在超级电容器电极材料方面具有重要的应用前景.

关 键 词:微孔碳  合成  电化学性能  含锌有机配位聚合物  氢键作用  电极材料  
收稿时间:2013-01-17
修稿时间:2013-04-27

Synthesis and Electrochemical Performance of Microporous Carbon Using a Zinc(II)-Organic Coordination Polymer
QIAN Jia-Sheng LIU Ming-Xian,GAN Li-Hua,LU Yao-Kang CHEN Ling-Yan YE Rui-Jie CHEN Long-Wu.Synthesis and Electrochemical Performance of Microporous Carbon Using a Zinc(II)-Organic Coordination Polymer[J].Acta Physico-Chimica Sinica,2013,29(7):1494-1500.
Authors:QIAN Jia-Sheng LIU Ming-Xian  GAN Li-Hua  LU Yao-Kang CHEN Ling-Yan YE Rui-Jie CHEN Long-Wu
Institution:Department of Chemistry, Tongji University, Shanghai 200092, P. R. China
Abstract:Microporous carbon was prepared using a novel procedure based on a zinc(II)-organic coordination polymer. The polymer was prepared through the coordination interaction of zinc ions with tartaric acid, and then it was introduced into the open networks of resorcinol/formaldehyde (R/F) resol using hydrogen-bonding interactions. The R/F resol and zinc-organic coordination compound system copolymerized to produce an R/F and zinc-organic coordination copolymer. The copolymer was then heat-treated at 950℃ to decompose and evaporate zinc to fabricate microporous carbon materials. The carbon materials possessed relatively regular large micropores, with a specific surface area of up to 1260 m2·g-1 and a total pore volume of 0.63 cm3·g-1. The resultant microporous carbon materials were used as supercapacitor electrodes, exhibiting an equivalent series resistance of 0.46 Ω, and ideal capacitive behavior with a rectangular shape in cyclic voltammograms. Galvanostatic charge/discharge measurements of the carbon materials gave a specific capacitance of 196 F·g-1 at a current density of 1 A· g-1 and 137 F·g-1 at a large current density of 10 A·g-1. A high retention of 98% was measured for the long-term cycling stability (~1000 cycles) of the mesoporous carbon. Overall, the microporous carbon materials exhibited very good electrochemical performance. This study highlights the potential of well-designed microporous carbon materials as electrodes for diverse supercapacitor applications.
Keywords:Microporous carbon  Synthesis  Electrochemical performance  Zinc(II)-organic coordination polymer  Hydrogen-bonding interaction  Electrode material
本文献已被 CNKI 等数据库收录!
点击此处可从《物理化学学报》浏览原始摘要信息
点击此处可从《物理化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号