首页 | 本学科首页   官方微博 | 高级检索  
     


General theoretical analysis of three-connected polyhedral molecules and their capped derivatives
Authors:Roy L. Johnston  D. Michael P. Mingos
Affiliation:

Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR Great Britain

Abstract:The synthesis of the half-sandwich compound Na[(C5H5)Ni{P(S)(CH3)2}2] is described. The anions [(C5H5)Ni{P(S)R2}2]?, 1a (R = OCH3) and 1b (R = CH3) react as bidentate sulfur ligands with [Ni2(C5H5)3]+, giving nickelocene and weakly paramagnetic dinuclear complexes of the type [(C5H5)Ni{P(S)R2}2Ni(C5H5)] (2a,b). In these compounds, the P(S)R2 units form NiPSNi bridges in such a fashion as to generate a (C5H5)NiP2 and a (C5H5)NiS2 unit. A temperature-dependent singlettriplet spin equilibrium is observed, which is essentially localized on the (C5H5)NiS2 side. Accordingly, the position of the cyclopentadienyl peak of the (C5H5)Ni unit bound to the two sulfur donor centers displays a very large temperature dependence in the 1H NMR spectra. MO model calculations (EHT) for P(S)H2?, [(C5H5)Ni{P(S)H2}2]? (1c), [(C5H5)Ni{P(S)H2}2Ni(C5H5)] (2c) and its isomer 3c allow the observed spin crossover to be explained as a consequence of the pronounced π-donor properties of the sulfur centers and allow predictions for related complexes.The green complexes 2a,b isomerize completely and irreversibly in a first-order reaction to yield the diamagnetic red compounds [{(C5H5)NiP(S)R2}2] (3a,b), in which each (C5H5)Ni unit is coordinated to one P and one S donor atom. The rate constant of isomerization of 2a, k (7.6 ± 0.3) × 10?4s?1 at 306 K, and the energy of activation, Ea 76 kJ mol?1, have been determined. The rate of isomerization is independent of the solvent, and crossover experiments verify that the isomerization is an intramolecular process without involvement of the monomeric units [(C5H5)NiP(S)R2].
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号