首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An Efficient Approximation Algorithm for Minimizing Makespan on Uniformly Related Machines
Authors:Chandra Chekuri  Michael Bender  
Institution:Department of Computing Principles Research, Bell Labs, 600-700 Mountain Avenue, Murray Hill, New Jersey, 07974, f1;Department of Computer Science, State University of New York at Stony Brook, Stony Brook, New York, 11794-4400, , f2
Abstract:We give a new and efficient approximation algorithm for scheduling precedence-constrained jobs on machines with different speeds. The problem is as follows. We are given n jobs to be scheduled on a set of m machines. Jobs have processing times and machines have speeds. It takes pj/si units of time for machine i with speed si to process job j with processing requirement pj. Precedence constraints between jobs are given in the form of a partial order. If j k, processing of job k cannot start until job j's execution is completed. The objective is to find a non-preemptive schedule to minimize the makespan of the schedule. Chudak and Shmoys (1997, “Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),” pp. 581–590) gave an algorithm with an approximation ratio of O(log m), significantly improving the earlier ratio of due to Jaffe (1980, Theoret. Comput. Sci.26, 1–17). Their algorithm is based on solving a linear programming relaxation. Building on some of their ideas, we present a combinatorial algorithm that achieves a similar approximation ratio but runs in O(n3) time. Our algorithm is based on a new and simple lower bound which we believe is of independent interest.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号