首页 | 本学科首页   官方微博 | 高级检索  
     


PRODUCTION OF BREAKS IN SINGLE- AND DOUBLE-STRANDED FORMS OF BACTERIOPHAGE øx174 DNA BY PROFLAVINE AND LIGHT TREATMENT
Authors:J. Piette    C. M. Calberg-Bacq   A. Van de   Vorst
Affiliation:Laboratory of General and Medical Microbiology;*Experimental Physics, University of Liège, Sart-Tilman, B-4000 par Liege 1, Belgium
Abstract:Abstract— Irradiation at 440 + 360 nm and a fluence rate of 3.8 kJm-2 min-1, of both complexes previously formed between proflavine and either øX circular single-stranded (ss) DNA or øX supercoiled duplex (RFI)DNA, induces single-strand scissions in the two DNAs under consideration. Linear øXSS DNA molecules are detected by sedimentation through alkaline sucrose gradients. After treatment of the øXRFI DNA, however, the degree of degradation is the same whether it is measured under neutral or alkaline conditions, indicating that alkaline-labile bonds are not created; moreover, double-strand breaks can only be detected after accumulation of single-strand breaks. In addition to the amount of proflavine bound to the DNA and the duration of irradiation, the following factors are shown to influence the nicking activity of the treatment: (1) the DNA structure (the øXRFI DNA is much more sensitive than the øXss DNA); (2) the ionic strength of the medium during irradiation (a high value of 0.5 leads to a markedly increased efficiency); (3) the addition of cysteamine (this latter compound decreases the reaction rate) and (4) the irradiation wavelength (after irradiation at 440 nm alone, the reaction occurs at a reduced rate and is sensitive to NaN3). The kinetics of the nicking reaction does not follow a single-hit curve showing that at least one primary lesion occurs prior to strand breakage. On the other hand, strand scission cannot be detected after irradiation of the proflavine-DNA complexes at the low fluence rate causing a decrease in the infectivity of both øXSS and øXRFI DNAs. Similarly. the sedimentation pattern of the DNA extracted from treated øx174 phages 99.9% inactivated, is identical to that of the control ss DNA, although more drastic treatments are susceptible to induce single strand breaks inside the phage head. Finally, the unknown lesion (s) that is biologically important does not prevent the treated DNAs from penetrating into the hostcells.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号