首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Hemilabile ligands in organolithium chemistry: substituent effects on lithium ion chelation
Authors:Ramírez Antonio  Lobkovsky Emil  Collum David B
Institution:Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853-1301, USA.
Abstract:The lithium diisopropylamide-mediated 1,2-elimination of 1-bromocyclooctene to provide cyclooctyne is investigated using approximately 50 potentially hemilabile polyethers and amino ethers. Rate laws for selected ligands reveal chelated monomer-based pathways. The dependence of the rates on ligand structure shows that anticipated rate accelerations based on the gem-dimethyl effect are nonexistent and that substituents generally retard the reaction. With the aid of semiempirical and DFT computational studies, the factors influencing chelation are discussed. It seems that severe buttressing within chelates of the substitutionally rich ligands precludes a net stabilization of the chelates relative to nonchelated (eta(1)-solvated) forms. One ligand-MeOCH(2)CH(2)NMe(2)-appears to promote elimination uniquely by a higher-coordinate monomer-based pathway.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号