首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electronic structure of a binuclear nickel complex of relevance to [NiFe] hydrogenase
Authors:van Gastel Maurice  Shaw Jennifer L  Blake Alexander J  Flores Marco  Schröder Martin  McMaster Jonathan  Lubitz Wolfgang
Institution:Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany. vgastel@mpi-muelheim.mpg.de
Abstract:The binuclear complex Ni(2)(L)(MeCN)(2)](3+) (L(2-) = compartmental macrocycle incorporating imine N and thiolate S donors) has a Ni(III) center bridged via two thiolate S-donors to a diamagnetic Ni(II) center. The ground-state has dominant 3d(z)(1)(2) character similar to that observed for NiFe] hydrogenases in which Ni(III) is bridged via two thiolate donors to a diamagnetic center (Fe(II)). The system has been studied by X-ray crystallography and pulse EPR, ESEEM, and ENDOR spectroscopy in order to determine the extent of spin-delocalization onto the macrocycle L(2-). The hyperfine coupling constants of six nitrogen atoms have been identified and divided into three sets of two equivalent nitrogens. The most strongly coupled nitrogen atoms (a(iso) approximately 53 MHz) stem from axially bound solvent acetonitrile molecules. The two macrocycle nitrogens on the Ni(III) side have a coupling of a(iso) approximately 11 MHz, and those on the Ni(II) side have a coupling of a(iso) approximately 1-2 MHz. Density functional theory (DFT) calculations confirm this assignment, while comparison of the calculated and experimental (14)N hyperfine coupling constants yields a complete picture of the electron-spin density distribution. In total, 91% spin density is found at the Ni(III) of which 72% is in the 3d(z)(2) orbital and 16% in the 3d(xy) orbital. The Ni(II) contains -3.5% spin density, and 7.5% spin density is found at the axial MeCN ligands. In analogy to hydrogenases, it becomes apparent that binding of a substrate to Ni at the axial positions causes a redistribution of the electron charge and spin density, and this redistribution polarizes the chemical bonds of the axial ligand. For NiFe] hydrogenases this implies that the H(2) bond becomes polarized upon binding of the substrate, which may facilitate its heterolytic splitting.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号