首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Straightforward route to the adamantane clusters [Sn4Q10]4- (Q = S, Se, Te) and use in the assembly of open-framework chalcogenides (Me4N)2M[Sn4Se10] (M = Mn(II), Fe(II), Co(II), Zn(II)) including the first telluride member (Me4N)2Mn[Ge4Te10
Authors:Tsamourtzi Konstantina  Song Jung-Hwan  Bakas Thomas  Freeman Arthur J  Trikalitis Pantelis N  Kanatzidis Mercouri G
Institution:Department of Chemistry, University of Crete, Voutes 71003, Heraklion, Greece.
Abstract:The reaction of K(2)Sn(2)Q(5) (Q = S, Se, Te) with stoichiometric amounts of alkyl-ammonium bromides R(4)NBr (R = methyl or ethyl) in ethylenediamine (en) afforded the corresponding salts (R(4)N)(4)Sn(4)Q(10)] (Q = S, Se, Te) in high yield. Although the compound K(2)Sn(2)Te(5) is not known, this reaction is also applicable to solids with a nominal composition "K(2)Sn(2)Te(5)" which in the presence of R(4)NBr in en are quantitatively converted to the salts (R(4)N)(4)Sn(4)Te(10)] on a multigram scale. These salts contain the molecular adamantane clusters Sn(4)Q(10)](4-) and can serve as soluble precursors in simple metathesis reactions with transition metal salts to synthesize the large family of open-framework compounds (Me(4)N)(2)MSn(4)Se(10)] (M = Mn(2+), Fe(2+), Co(2+), Zn(2+)). Full structural characterization of these materials as well as their magnetic and optical properties is reported. Depending on the transition metal in (Me(4)N)(2)MSn(4)Se(10)], the energy band gaps of these compounds lie in the range of 1.27-2.23 eV. (Me(4)N)(2)MnGe(4)Te(10)] is the first telluride analogue to be reported in this family. This material is a narrow band gap semiconductor with an optical absorption energy of 0.69 eV. Ab initio electronic band structure calculations validate the semiconductor nature of these chalcogenides and indicate a nearly direct band gap.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号