首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Itinerant electron-driven chiral magnetic ordering and spontaneous quantum Hall effect in triangular lattice models
Authors:Martin Ivar  Batista C D
Institution:Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
Abstract:We study the Kondo Lattice and the Hubbard models on a triangular lattice. We find that at the mean-field level, these rotationally invariant models naturally support a noncoplanar chiral magnetic ordering. It appears as a weak-coupling instability at the band filling factor 3/4 due to the perfect nesting of the itinerant electron Fermi surface. This ordering is a triangular-lattice counterpart of the collinear Neel ordering that occurs on the half-filled square lattice. While the long-range magnetic ordering is destroyed by thermal fluctuations, the chirality can persist up to a finite temperature, causing a spontaneous quantum Hall effect in the absence of any externally applied magnetic field.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号