首页 | 本学科首页   官方微博 | 高级检索  
     

基于叶片高光谱特性分析的树种识别
引用本文:王志辉,丁丽霞. 基于叶片高光谱特性分析的树种识别[J]. 光谱学与光谱分析, 2010, 30(7): 1825-1829. DOI: 10.3964/j.issn.1000-0593(2010)07-1825-05
作者姓名:王志辉  丁丽霞
作者单位:浙江农林大学,浙江省森林生态系统碳循环与固碳减排重点实验室,环境科技学院,浙江,临安,311300;浙江农林大学,浙江省森林生态系统碳循环与固碳减排重点实验室,环境科技学院,浙江,临安,311300
基金项目:国家自然科学基金项目,国家高技术研究发展计划(863计划)项目,浙江省林业厅项目,浙江省教育厅项目 
摘    要:高光谱遥感技术的出现将为解决森林树种的精细识别难题提供有效的途径。利用高光谱遥感技术进行树种鉴别时,光谱特征的选择及提取是个非常重要的过程。与多光谱数据相比,高光谱数据具有波段多、数据量大、冗余度大等特点。该文利用光谱微分法对原始光谱数据进行处理,分析不同树种原始光谱、光谱一阶微分和光谱二阶微分曲线图,从中选择差异较大的波段用于鉴别不同树种。最后利用欧氏距离对所选择的波段进行检验识别不同树种的效果,检验的结果显示选择的波段能有效地区分不同树种。区分不同树种的有效波段大都位于近红外波段, 并且差异最大的波段也是近红外波段,其分别为1 657~1 666和1 868~1 877 nm。

关 键 词:树种  高光谱  光谱微分  欧氏距离
收稿时间:2009-10-11

Tree Species Discrimination Based on Leaf-Level Hyperspectral Characteristic Analysis
WANG Zhi-hui,DING Li-xia. Tree Species Discrimination Based on Leaf-Level Hyperspectral Characteristic Analysis[J]. Spectroscopy and Spectral Analysis, 2010, 30(7): 1825-1829. DOI: 10.3964/j.issn.1000-0593(2010)07-1825-05
Authors:WANG Zhi-hui  DING Li-xia
Affiliation:Zhejiang Provincial Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration, College of Environmental Science and Technology, Zhejiang Agriculture and Forestry University, Lin’an 311300, China
Abstract:The emergence of hyperspectral remote sensing technology will provide chance for solving problems of identifying forest tree species precisely. For discrimination of tree species with hyperspectral remote sensing technology, extraction and selection of the spectral characteristics is a very important process. Compared with multispectral data, hyperspectral data have the characteristics of more bands, larger amount of data and larger redundancy degree. The method of derivative reflectance was used to deal with the original spectral data, analyze and compare curves of the original spectrum, the first derivative reflectance and second derivative reflectance of the different tree species, and the bands with bigger difference were selected to identify the different tree species. Then the Euclidean distance method was used to test the selective bands identifying different tree species, and the results showed that the selective bands could identify different tree species effectively. The bands for identifying different tree species were most near-infrared bands, and the bands with maximum difference derived from the three methods are 1 657-1 666, 1 868-1 877 and 1 868-1 877 nm respectively.
Keywords:Tree species  Hyperspectral  Derivative reflectance  Euclidean distance   
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号