首页 | 本学科首页   官方微博 | 高级检索  
     


The decomposition of H2S on Ni(110)
Authors:D.R. Huntley
Affiliation:

Chemistry Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6201, USA

Abstract:Adsorbed H2S decomposes on Ni(110) to form primarily surface S and H for coverages of less than 0.5 ML. The hydrogen evolves in two separate TPD peaks, characteristic of hydrogen recombination and desorption from the clean surface and from regions perturbed by chemisorbed sulfur. XPS and HREELS indicate the presence of SH and possibly H2S groups on the surface at 110 K. The XPS data indicates that for coverages less than about 0.5 ML, the concentration of molecular H2S is small, but it is difficult to asess the coverage of SH groups. However, all of the molecular species decompose prior to hydrogen desorption (for high coverage, 180 K). Physisorbed H2S is observed on the surface for coverages greater than about 0.5 ML.

The sulfur Auger lineshape was observed to be a function of both coverage and temperature. The changes in the lineshape were attributed to perturbations in local bonding interactions between the S and the Ni surface, perhaps involving some change in either bonding sites or distances but not involving SH bond scission.

The decomposition reaction was modeled using a bond order conservation method which successfully reproduced the experimental results.

Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号