首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electronic and optical properties of pyrrole and thiophene oligomers: A density functional theory study
Authors:Juan Chen  Xingfeng Zhu  Chenglin Luo  Yafei Dai
Institution:Department of Physics, School of Physics Science & Technology and Jiangsu Key Laboratory for NSLSCS, Nanjing Normal University, Nanjing, China
Abstract:The conductive mechanism of pyrrole (Py) and thiophene (Th) oligomers is investigated in the framework of density functional theory. Geometric constructions and electronic structures of neutral n‐Py/n‐Th and oxidized n‐Pym+/n‐Thm+ oligomers (6 ≤ n ≤ 48, 2 ≤ m ≤ 18) are reported as a function of oligomer length. The charges in the oxidized oligomers have a localized distribution along the oxidized n‐Pym+/n‐Thm+ oligomers, and each set of two positive charges is localized in one area. Therefore, the charge carriers in oxidized n‐Pym+/n‐Thm+ oligomers are bipolarons. Furthermore, the nonlinear optical properties of the n‐Py/n‐Th oligomers are investigated, for which the static polarizability α, the first polarizability β, and the second polarizability γ are calculated. When the ratio of m/n is 1/3, the static polarizability <α> and the polarizability anisotropy Δα are maximized. In addition, neutral n‐Py/n‐Th oligomers have maximum <γ> values. The values of β were determined mainly by the dipole of the molecule, while the values of γ were closely related to the aromaticity of the oligomer. The stronger the aromaticity, the bigger the γ value. All calculations indicate that the polarizability and absorption spectrum can be tuned by controlling the oxidation level, making these oligomers applicable as good nonlinear optical materials.
Keywords:conducting polymer  density functional theory  polarizability  pyrrole  thiophene
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号