首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Influence of electric field on the hydrogen bond network of water
Authors:Suresh S J  Satish A V  Choudhary A
Institution:Unilever Research India, Hindustan Lever Research Centre, Whitefield, Bangalore. sj.suresh@unilever.com
Abstract:Understanding the inherent response of water to an external electric (E)-field is useful towards decoupling the role of E-field and surface in several practically encountered situations, such as that near an ion, near a charged surface, or within a biological nanopore. While this problem has been studied in some detail through simulations in the past, it has not been very amenable for theoretical analysis owing to the complexities presented by the hydrogen (H) bond interactions in water. It is also difficult to perform experiments with water in externally imposed, high E-fields owing to dielectric breakdown problems; it is hence all the more important that theoretical progress in this area complements the progress achieved through simulations. In an attempt to fill this lacuna, we develop a theory based on relatively simple concepts of reaction equilibria and Boltzmann distribution. The results are discussed in three parts: one pertaining to a comparison of the key features of the theory vis a vis published simulation/experimental results; second pertaining to insights into the H-bond stoichiometry and molecular orientations at different field strengths and temperatures; and the third relating to a surprising but explainable finding that H-bonds can stabilize molecules whose dipoles are oriented perpendicular to the direction of field (in addition to the E-field and H-bonds both stabilizing molecules with dipoles aligned in the direction of the field).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号