首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Structures and thermal properties of chitosan-modified poly(methyl methacrylate)
Authors:Trong-Ming Don  Shih-Chang Hsu  Wen-Yen Chiu
Institution:1. Department of Chemical Engineering, Mingchi Institute of Technology, Taipei Shein, Taiwan, Republic of China;2. Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan, Republic of China
Abstract:The emulsion polymerization of methyl methacrylate in the presence of chitosan with potassium persulfate (KPS) as an initiator was examined in a previous article. The free radicals that dissociated from KPS not only initiated the polymerization but also degraded the chitosan molecules. Therefore, in addition to its role as a cationic surfactant, chitosan also participated in the polymerization reaction. When the polymerization was complete, the latex polymer consisted of poly(methyl methacrylate) (PMMA) homopolymer and chitosan–PMMA copolymer. In this article, the structures and thermal properties of latex polymers are examined. Gel permeation chromatography was used to measure the molecular weight of the PMMA homopolymer, with the copolymer composition determined by an elemental analyzer. Scanning and transmission electronic microscopes were used to measure the size of latex particles from different reaction systems. The surface charges of latex particles at several different pH values were determined by the measurement of the ζ potential. All results agreed with the reaction mechanism proposed in the previous article. Finally, the presence of rigid chitosan increased the glass-transition temperature of the final latex polymers. Thermogravimetric analysis showed that the degradation behavior of latex polymers was similar to the unzipping mechanism of PMMA, yet the presence of chitosan units hindered the unzipping of the main chains in chitosan–PMMA copolymers. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1646–1655, 2001
Keywords:structure  thermal properties  chitosan  poly(methyl methacrylate)  copolymer
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号