首页 | 本学科首页   官方微博 | 高级检索  
     


Improved embedded molecular cluster model
Authors:E. K. Shidlovskaya
Affiliation:Institute of Chemical Physics, University of Latvia, Rainis blvd. 19, Riga LV-1586, Latvia

The Abdus Salam International Centre for Theoretical Physics, P.O. Box 586, 34100 Trieste, Italy

Abstract:We demonstrate that boundary effects (i.e., displacements of the cluster boundary atoms from their lattice sites and the difference between effective charges of the perfect crystal atoms and those of the cluster atoms in the case of a cluster with no point defect in it) in an embedded molecular cluster (EMC) model can be radically reduced. A new embedding scheme is proposed. It includes search for the structural elements (SE) of which perfect crystal is composed, use of corresponding to these SE expression for the total energy, and application of the degree of localization of equations consistent with the wave functions of the cluster. To get equations for the cluster wave functions, the problem of varied subsystem in the field of the frozen remaining part of the whole electron system” is investigated in the framework of a one-electron approximation. The consideration is general for every task of this type. Homogeneous equations resulting directly from variation of the total energy expression are obtained and transformed to the eigenvalue problem equations. Orthogonality constraints are not imposed during variation. A particular case of the equations describing mutually orthogonal one-electron wave functions of the cluster staying nonorthogonal to those of the remaining crystal is found. A proposed embedding scheme is realized in the CLUSTER code based on the calculation scheme of the semiempirical INDO method. Boundary effects both in the standard (cluster in the field of the infinite lattice of nonpoint spherical charges) and new embedding scheme are investigated, calculating the clusters of LiF, MgO, NaCl, KCl, and AgCl crystals. Significant reduction of the boundary effects in the new embedding scheme is achieved. Reasons for the boundary effects are discussed. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002
Keywords:nonorthogonal one-electron wave functions  direct variational approach  embedded molecular cluster  boundary conditions  ionic crystals
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号