首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Binding‐Induced DNA Nanomachines Triggered by Proteins and Nucleic Acids
Authors:Hongquan Zhang  Maode Lai  Albert Zuehlke  Hanyong Peng  Xing‐Fang Li  X Chris Le
Abstract:We introduce the concept and operation of a binding‐induced DNA nanomachine that can be activated by proteins and nucleic acids. This new type of nanomachine harnesses specific target binding to trigger assembly of separate DNA components that are otherwise unable to spontaneously assemble. Three‐dimensional DNA tracks of high density are constructed on gold nanoparticles functionalized with hundreds of single‐stranded oligonucleotides and tens of an affinity ligand. A DNA swing arm, free in solution, is linked to a second affinity ligand. Binding of a target molecule to the two ligands brings the swing arm to AuNP and initiates autonomous, stepwise movement of the swing arm around the AuNP surface. The movement of the swing arm, powered by enzymatic cleavage of conjugated oligonucleotides, cleaves hundreds of oligonucleotides in response to a single binding event. We demonstrate three nanomachines that are specifically activated by streptavidin, platelet‐derived growth factor, and the Smallpox gene. Substituting the ligands enables the nanomachine to respond to other molecules. The new nanomachines have several unique and advantageous features over DNA nanomachines that rely on DNA self‐assembly.
Keywords:DNA‐Aggregation  DNA‐Nanomaschinen  Gold‐Nanopartikel  Proteine
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号