首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Photoelectrochemical study on charge transfer properties of TiO2-B nanowires with an application as humidity sensors
Authors:Wang Geng  Wang Qiang  Lu Wu  Li Jinghong
Institution:Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China.
Abstract:One-dimensional (1-D) TiO2-B nanowires have been synthesized via a facile solvothermal route. The morphology and crystalline structures of the nanowires were characterized by using powder X-ray diffraction, low/high-resolution transmission electron microscopy, and Brunauer-Emmett-Teller methods. It is important with the calcination treatment at 350 degrees C to maintain 1-D morphologies of the material in the form of single-crystalline TiO2-B nanowires. In addition, a simple method was used to study the photogenerated charge transfer and photoelectrochemical properties of the TiO2-B nanowires in comparison with commercial TiO2 P25 nanoparticles based on the experimental data from the electric field-effected photocurrent action spectrum and Mott-Schottky measurements. It was revealed that TiO2-B nanostructures played an important role in the photoelectrochemical processes. The synthetic TiO2-B nanowire electrode exhibited unique electronic properties, e.g., favorable charge-transfer ability, negative-shifted appearing flat-band potential, existence of abundant surface states or oxygen vacancies, and high-level dopant density. Moreover, the obtained TiO2-B nanowires were found to display excellent humidity sensing abilities as functional materials in the humidity sensor application. With relative humidity increased from 5% to 95%, about one and half orders of magnitude change in resistance was observed in the TiO2-B nanowire-based surface-type humidity sensors.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号