首页 | 本学科首页   官方微博 | 高级检索  
     


Social Network Discovery by Mining Spatio-Temporal Events
Authors:Hady?W.?Lauw  author-information"  >  author-information__contact u-icon-before"  >  mailto:hadylauw@pmail.ntu.edu.sg"   title="  hadylauw@pmail.ntu.edu.sg"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author,Ee-Peng?Lim,HweeHwa?Pang,Teck-Tim?Tan
Affiliation:(1) School of Computer Engineering, Nanyang Technological University, Nanyang Avenue, Singapore, 639798;(2) School of Information Systems, Singapore Management University, 80 Stamford Road, Singapore, 178902;(3) Centre for IT Services, Nanyang Technological University, Nanyang Avenue, Singapore, 639798
Abstract:Knowing patterns of relationship in a social network is very useful for law enforcement agencies to investigate collaborations among criminals, for businesses to exploit relationships to sell products, or for individuals who wish to network with others. After all, it is not just what you know, but also whom you know, that matters. However, finding out who is related to whom on a large scale is a complex problem. Asking every single individual would be impractical, given the huge number of individuals and the changing dynamics of relationships. Recent advancement in technology has allowed more data about activities of individuals to be collected. Such data may be mined to reveal associations between these individuals. Specifically, we focus on data having space and time elements, such as logs of people's movement over various locations or of their Internet activities at various cyber locations. Reasoning that individuals who are frequently found together are likely to be associated with each other, we mine from the data instances where several actors co-occur in space and time, presumably due to an underlying interaction. We call these spatio-temporal co-occurrences events, which we use to establish relationships between pairs of individuals. In this paper, we propose a model for constructing a social network from events, and provide an algorithm that mines these events from the data. Experiments on a real-life data tracking people's accesses to cyber locations have also yielded encouraging results. Hady W. Lauw is a graduate student at the School of Computer Engineering, Nanyang Technological University, Singapore. His research interests include spatio-temporal data mining, social network discovery, and link analyisis. He has a BEng in computer engineering from Nanyang Technological University. Ee-Peng Lim is an Associate Professor with the School of Computer Engineering, Nanyang Technological University, Singapore. He received his PhD from the University of Minnesota, Minneapolis in 1994 and B.Sc. in Computer Science from National University of Singapore. Ee-Peng's research interests include information integration, data/text/web mining, digital libraries, and wireless intelligence. He is currently an Associate Editor of the ACM Transactions on Information Systems (TOIS), International Journal of Digital Libraries (IJDL) and International Journal of Data Warehousing and Mining (IJDWM). He was the Program Co-Chair of the ACM/IEEE Joint Conference on Digital Libraries (JCDL 2004), and Conference/Program Co-Chairs of International Conference on Asian Digital Libraries (ICADL 2004). He has also served in the program committee of numerous international conferences. Dr Lim is a Senior Member of IEEE and a Member of ACM. HweeHwa Pang received the B.Sc.—with first class honors—and M.S. degrees from the National University of Singapore in 1989 and 1991, respectively, and the PhD degree from the University of Wisconsin at Madison in 1994, all in Computer Science. He is currently an Associate Professor at the Singapore Management University. His research interests include database management systems, data security and quality, operating systems, and multimedia servers. He has many years of hands-on experience in system implementation and project management. He has also participated in transferring some of his research results to industry. Teck-Tim Tan is an IT Manager (Operations) at the Centre for IT Services, Nanyang Technological University (NTU), Singapore. He administers and oversees NTU's campus-wide wireless LAN infrastructure which facilitates access to the University's vast IT resources and services practically anywhere on campus.
Keywords:data mining  pattern discovery  spatio-temporal analysis
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号