首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The oscillatory channel flow with arbitrary wall injection
Authors:J Majdalani
Institution:(1) Mathematics Department, Indian Institute of Technology, Roorkee, Uttaranchal, 247667, India;(2) Engineering Department, Manchester Metropolitan University, Oxford Rd., Manchester, M5 1GD, UK;(3) Fire Safety Engineering Program, Leeds College of Building/Leeds Metropolitan University, North Street, Leeds, LS2 7QT, UK
Abstract:In this article, we consider the laminar oscillatory flow in a low aspect ratio channel with porous walls. For small-amplitude pressure oscillations, we derive asymptotic formulations for the flow parameters using three different perturbation approaches. The undisturbed state is represented by an arbitrary mean-flow solution satisfying the Berman equation. For uniform wall injection, symmetric solutions are obtained for the temporal field from both the linearized vorticity and momentum transport equations. Asymptotic solutions that have dissimilar expressions are compared and shown to agree favourably with one another and with numerical experiments. In fact, numerical simulations of both linearly perturbed and nonlinear Navier-Stokes equations are used for validation purposes. As we insist on verifications, the absolute error associated with the total time-dependent velocities is analysed. The order of the cumulative error is established and the formulation based on the two-variable multiple-scale approach is found to be the most general and accurate. The explicit formulations help unveil interesting technical features and vortical structures associated with the oscillatory wave character. A similarity parameter is shown to exist in all formulations regardless of the mean-flow selection.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号