首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nuclear spin-lattice relaxation in the triply rotating frame and ultraslow molecular motions in solids
Authors:A E Mefed
Institution:1. Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Fryazino, Russian Federation
Abstract:A method for measuring nuclear magnetic spin-lattice relaxation in solids in the effective field He3 acting in the triply rotating frame (TRF) is described. The method advances the previously described techniques whereby nuclear magnetic resonance and relaxation in the rotating (RF) and doubly rotating frames (DRF) are measured directly. In the present work, the RF and DRF are employed for suppressing the secular part of nuclear dipole-dipole (DD) interactions in the first two orders. As a result, the higher-order DD interactions (four- and five-particle ones) were separated, and their contribution to the nuclear spin-lattice relaxation in the TRF was studied experimentally. The experiments were carried out on protons in polycrystalline benzene. With the introduced technique, an overall spin-lattice relaxation decay in the TRF was recorded continuously during a single radio-frequency pulse with a length not exceeding 1 s. The contribution of multiproton nonsecular DD interactions to the proton spin-lattice relaxation in the TRF was observed selectively as a pronounced local minimum in the temperature dependence of the relaxation timeT 1ϱϱϱ. This contribution corresponds to ultraslow motion of benzene molecules with a rate about γHe3 2π · (101-103) s-1 and is determined quantitatively by specific correlation functions corresponding to the multiparticle nonsecular DD interactions of protons. The prospects of using this method for studying ultraslow atomic and molecular dynamics in solids are discussed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号