首页 | 本学科首页   官方微博 | 高级检索  
     


A Stochastic Trust-Region Framework for Policy Optimization
Authors:Mingming Zhao  Yongfeng Li & Zaiwen Wen
Abstract:In this paper, we study a few challenging theoretical and numerical issues on the well known trust region policy optimization for deep reinforcement learning. The goal is to find a policy that maximizes the total expected reward when the agent acts according to the policy. The trust region subproblem is constructed with a surrogate function coherent to the total expected reward and a general distance constraint around the latest policy. We solve the subproblem using a reconditioned stochastic gradient method with a line search scheme to ensure that each step promotes the model function and stays in the trust region. To overcome the bias caused by sampling to the function estimations under the random settings, we add the empirical standard deviation of the total expected reward to the predicted increase in a ratio in order to update the trust region radius and decide whether the trial point is accepted. Moreover, for a Gaussian policy which is commonly used for continuous action space, the maximization with respect to the mean and covariance is performed separately to control the entropy loss. Our theoretical analysis shows that the deterministic version of the proposed algorithm tends to generate a monotonic improvement of the total expected reward and the global convergence is guaranteed under moderate assumptions. Comparisons with the state-of-the-art methods demonstrate the effectiveness and robustness of our method over robotic controls and game playings from OpenAI Gym.
Keywords:Deep reinforcement learning   Stochastic trust region method   Policy optimization   Global convergence   Entropy control.
点击此处可从《计算数学(英文版)》浏览原始摘要信息
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号