首页 | 本学科首页   官方微博 | 高级检索  
     

粒子群优化模糊神经网络在语音识别中的应用
引用本文:孙慧,张雪英,宁爱平. 粒子群优化模糊神经网络在语音识别中的应用[J]. 数学的实践与认识, 2010, 40(6)
作者姓名:孙慧  张雪英  宁爱平
作者单位:太原理工大学,信息工程学院,山西,太原,030024
基金项目:国家自然科学基金(60472094); 山西省自然科学基金(20051039,2008011031)
摘    要:针对模糊神经网络训练采用BP算法比较依赖于网络的初始条件,训练时间较长,容易陷入局部极值的缺点,利用粒子群优化算法(PSO)的全局搜索性能,将PSO用于模糊神经网络的训练过程.由于基本PSO算法存在一定的早熟收敛问题,引入一种自适应动态改变惯性因子的PSO算法,使算法具有较强的全局搜索能力.将此算法训练的模糊神经网络应用于语音识别中,结果表明,与BP算法相比,粒子群优化的模糊神经网络具有较高的收敛速度和识别率.

关 键 词:粒子群优化  模糊神经网络  语音识别

The Application of Fuzzy Neural Network Based on PSO Algorithm in Speech Recognition System
SUN Hui,ZHANG Xue-ying,NING Ai-ping. The Application of Fuzzy Neural Network Based on PSO Algorithm in Speech Recognition System[J]. Mathematics in Practice and Theory, 2010, 40(6)
Authors:SUN Hui  ZHANG Xue-ying  NING Ai-ping
Affiliation:SUN Hui,ZHANG Xue-ying,NING Ai-ping (College of Information Engineering,Taiyuan University of Technology,Taiyuan 030024,China)
Abstract:The paper proposes fuzzy neural network trained by particle swarm optimization (PSO) algorithm which has global search characteristic,in order to overcome shortage of traditional BP algorithm which replies on initial conditions,has the longer training time,and is easy to be trapped into the local extremum in fuzzy neural network.The paper introduces the inertia factor that changed adaptively and dynamically because of premature convergence of the basic PSO algorithm,which make the algorithm have stronger gl...
Keywords:PSO  fuzzy neural network  speech recognition  
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号