首页 | 本学科首页   官方微博 | 高级检索  
     


Spectrophotometric determination of tungsten(VI) enriched by nanometer-size titanium dioxide in water and sediment
Authors:Li Shunxing  Deng Nansheng  Zheng Fengying  Huang Yuzhen
Affiliation:

a Department of Chemistry, Zhangzhou Teachers College, Zhangzhou 363000, PR China

b Department of Environmental Science, Wuhan University, Wuhan 430072, PR China

Abstract:The adsorption of W (VI) on different metal oxides (TiO2, ZrO2), different crystal form of TiO2 (rutile, anatase) with high surface areas was studied and compared under different pH. A novel method for preconcentration of W (VI) with nanometer size titanium dioxide (rutile) and determination by spectrophotometry has been developed. W (VI) was selective adsorbed on 100 mg TiO2 from 250 ml solution at pH 3.0, then eluted by 2 ml 9 mol l−1 sodium hydroxide solution. The eluent was adjusted to 5 ml pH 0 solution, added 0.5 ml 12 mol l−1 HCl, 0.3 ml 3% TiCl3, 0.3 ml 50% NH4SCN, stirred for 20 min, used for the analysis of W (VI) by measuring the absorbance at 402 nm with spectrophotometry, based on the chromogenic reaction between the W (VI) and the mixture of TiCl3 and NH4SCN. This method gave a concentration enhancement of 50 for 250 ml sample, eliminated the sizable interferences on direct determination with spectrophotometry. Detection limits (3σ, n=11) of 1.2 ng ml−1, relative standard deviation of 2.3% at 10 ng ml−1 level were obtained. The method was applied to determine the W (VI) in hot spring water, river water, tap water and stream sediment. Analytical recoveries of W (VI) added to samples were 98–101%.
Keywords:Metal oxides   Rutile anatase   Spectrophotometry   Tungsten
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号