首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Self-Assembling Process of Colloidal Particles into Two-Dimensional Arrays Induced by Capillary Immersion Force: A Simulation Study With Discrete Element Method
Authors:Nishikawa  Hiroyuki  Maenosono  Shinya  Yamaguchi  Yukio  Okubo  Tatsuya
Institution:(1) Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
Abstract:This paper presents a simulation study for self-assembling process of colloidal particles into two-dimensional arrays due to capillary immersion force. Discrete element method is used to simulate the dynamics of colloidal particles trapped in a thin liquid film. The previous model is improved in the following two points: a modification of the screening effect of capillary immersion force and introduction of periodic boundary condition. Snapshots provided by the simulations agree well with experimental images taken by atomic force microscopy. The self-assembling process is quantified with pair correlation function and coordination number. At lower coverage, colloidal particles rapidly form small clusters that consist of several particles in the early stage. Subsequently, chain-like structures with some branches are mainly generated. On the other hand, at higher coverage, large domains of hexagonal close-packed (HCP) structures are gradually generated. The rate of the growth of HCP domains is much slower than that of the generation of the small clusters and the chain-like structures.
Keywords:silica sphere  particle array  self-assembly  capillary immersion force  numerical simulation  discrete element method  thin film
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号